Naval Research Laboratory

Washington, DC 20375-5320

A Fault Model for
Survivable Applications

JonN P. McDerMoOTT

Center for High Assurance Computer Systems
Information Technology Division

April 22, 2002

Approved for public release; distribution is unlimited.

NRL/MR/5540--02-8616

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) |2. REPORT DATE
April 22, 2002

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

A Fault Model for Survivable Applications

5. FUNDING NUMBERS

PE - 9999999
WU - 55-7287

8. AUTHOR(S)

John P. McDermott

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory, Code 5540
4555 Overlook Avenue, SW
Washington, DC 20375-5320

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/5540--02-8616

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Survivability for an application is the ability of the users to complete their mission in the presence of faults (the implication is
that some faults are malicious). This naturally Jeads to the need for precise descriptions of the faults to be survived. A survivability-
oriented model of fault events should describe aspects pertinent to restoration and response. It should also classify fault events
according to their impact on survivability, that is, how the damaged system continues to support its mission.

This report models a fault as a four tuple. The four tuple describes the propagation of the fault, the faulty computation it induces,
the required means of repairing the fault, and the fault’s impact on the mission. We use the model to describe the effect of surviv-
ability on security and identify 10 general assertions that must be true of every security mechanism in a survivable environment.

14. SUBJECT TERMS

Information system survivability
Fault tolerance

15. NUMBER OF PAGES
22

16. PRICE CODE

18. SECURITY CLASSIFICATION
OF THIS PAGE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION

20. LIMITATION OF ABSTRACT
OF ABSTRACT

UNCLASSIFIED UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

CONTENTS
T TEUTOQUCLION eeeeeeeeeeeeeeeeeeeeeeee e eeseeseesaesesbesesssee e ssessbesessessssaessobaeesab b e e s ek aa e s b e e e e s satesaaasteesobessasasen s st seesuns |
1.1 Applications, Processes, Environments, and INFraStrUCLULES ...evvvvrreereer e et e e eerenrereeesereeeeens 2
1.2 PrOCESS ALZEDIA ...oucuueeiceriecci it 2
2 A Survivability-Oriented Model Of FAultscoouroiiimiiiiiccii i 2
2.1 TALZEE 1evreveeecreeieesesmae s s s e s s R 2
Y, (o ST TTR T U U T T e eSO U OO UOO U UOO OIS UPIUPRP P 3
2.3 DAMAZE ..ovveeeerierseeacaesee s s ss b 5
D IIVALLAALION oeveeeeeeeeeeteeeeese e esssseeesteesseesesssaessseases s st esae s se s e e be s e s e s ebe e s esbseasse s bt s bt e nanesssbsbe st an 6
2.5 Identification of ENFOICEMENt SEIS ...c.vcvveirirririeciieeireersenstessaes e sr s e s s s s ese e st st neens 7
2.6 THE NUILTFAUIE «..eveveeeeeeeeeee st eereeeee e e eteesessese e e e e e e s e seesassaeshe s e e b s shaeas e s s e sreass s s e e s s e ar e sa et snsnsbassats 7
3 Modeling the Effect of Faults on Security and Survivability ..o 7
3.1 Define and Separate DOMAINSccvurueueurimeininieriiiin i 8
3.2 Establish INitial DOMIAINS «.uveeveeriieiiriereesteeresreertessteererreraesssear e sesebeeaassae s s s s st sbesres 8
3.3 Link External Actors With DOMAINSccvecvuerereererneeriiiiiinieiieeereeeeressessssae s ssesesasesnsesnsnens 9
3.4 Control Inter-Domain COMMUNICALON ..eecveeveverreeererneriresiiinrrerteerer et ssee s resee e sisesasees 9
3.5 Control Communication With the ERVIFONMENT ..c..cocvrvirriiiiiiinrienitineseie s 9
3.6 Detect and HAndIe FAUISocvveiviieeeeeeieerereseeeeresetisissseren e raes e e ssassae s s esssessae s s as e 10
37 'Ten GEneral ASSEITIONS ..ccccveivvreeieerreeecsaesseeesresesssseresnrsonsstresinssesssnsassssseasesattesontesaasessssanesens 10
4 AProcess Algebra EXAMPIEooomruiisiininerieistseietc e 10
4.1 SECUITLY POIICY wvevenvevrescrriieiuesiteiieese st 11
4.2 Process Algebra MOMelccoiriiuriirniinie s 11
A3 A SUIVIVADIE FAULL ooeeeeeeeeeeeeeeceeiee e ectieeeete e e seee e saeeeseneesssbas e s srre s e s nbaeassne e s s bae s s saeee s aesabnssanbes 16
4.4 A NON-SUTVIVADIE FAUIL «.oveieeeieeieeeieeeeceirrteseeeresesetr s s res s s s s e bt e e e e s s s bt s e s e sessn e e s s st e s ennnane 17
S CONCIUSIONS vvenveeveeseesesesseesesoresessasessssssesesssessanseasasseeseestessasseeaasis e sr s s n e e s b e ab s e s s s as e s sat s bttt s e e b b s b s nes 17
RICTCICIICES eneeoeeeeeeeeeeeeeeeeeeeesesesasssasseaesaessessssneseassssasaasssaasssesaanesesossbssasessa b b s aaaese b b e s s e as e ssnesseasesttsenasnnts 18
iii

A FAULT MODEL FOR SURVIVABLE APPLICATIONS

1 Introduction

Faults adversely impact the survivability of an application system. Survivability
for an application is the ability of the users to complete their mission in the pres-
ence of faults (the implication is that some faults are malicious). This definition
naturally leads to the need for precise descriptions of the faults to be survived. A
survivability-oriented model of fault events should describe aspects pertinent to
restoration and response. It should also classify fault events according to their
impact on survivability, that is, how the damaged system continues to support its
mission.

This report models a fault as a four tuple. The four tuple describes the prop-
agation of the fault, the faulty computation it induces, the required means of
repairing the fault, and the fault’s impact on the mission. We use this model to
describe the effect of survivability on security and identify ten general assertions
that must be true of every security mechanism in a survivable environment.

The purpose of this model is to understand the impact of different faults on
different architectures. It is not intended as a general fault removal or fault pre-
vention technique. It is not a substitute for assurance engineering, independent
verification, or validation but rather is a means of comparing the merits and de-
merits of design choices applied to survivable applications. So the model can be a
key building block of an assurance engineering or independent verification activity.
The model serves as a framework for defining flaw taxonomies and flaw spaces for
design studies.

The model’s perspective is large-scale application systems. Large-scale appli-
cation systems are made up of relatively complex software processes supported
by an infrastructure of other software and hardware. Some of these contain ob-
scure legacy logic of dubious quality. The effects of composing these processes has
usually not been fully investigated. Large scale systems experience disruptions
to services, loss of connectivity, and periods of instability. Dependability is low,
for many application processes. We assume that, at any point in the overall sys-
tem history, some components of large-scale systems are experiencing failure. The
chief impacts of this on our model are: 1) that complex faults are likely and 2) the
necessary conditions for survivable operation must be enforced in an environment
where even relatively weak assertions can be invalidated.

Some of the work on survivable systems has included a notion that Byzantine
faults are “arbitrary” faults. In the original work by Lamport, Shostak, and Pease
[6], components exhibiting Byzantine faults send “conflicting information to dif-
ferent parts of the system.” There is a significant distinction between “arbitrary”
and “sending conflicting information to different parts of the system.” The latter
suits the discovery of agreement protocols for fault tolerance but the former notion
includes faults not addressed by agreement protocols and is much less precise. On
the other hand, the distinction is very useful in understanding survivability. In a
survivability situation, we expect attacks designed by humans. It is reasonable to
expect that the (best) human attackers will understand all of the research results
that have been applied by the defense. These attack designers will seek to inval-
idate one of more of the conditions upon which survivability depends. For this

Manuscript approved March 15, 2002.

A Fault Model for Survivable Applications McDermott

reason, we will distinguish faults as either attacks or accidental faults.
We agree with Avizienis, Laprie, and Randell [1] that Byzantine faults are
faults where processes communicate inconsistent events to their peers.

1.1 Applications, Processes, Environments, and Infrastruc-
tures

To characterize faults with respect to survivability, designers must address the
specific application of the survivable system (that is the goals the application
is trying to achieve), the system’s environment, and the system’s infrastructure.
The environment of a process includes both clients and peers of a process. For
our purposes, a peer process is a process that is neither a client nor a server
(contractor) to the excepting process, but is accessible (i.e. can be a target, see
Section 2.1 below). The infrastructure of a process is the set of processes that
provide services to it. This includes host CPU’s, network connections, operating
systems, etc. as infrastructure processes.

1.2 Process Algebra

Process algebra, typified by the algebra CSP [4], is one model of computation. It
is widely understood and well-suited to describing interactions between systems
of concurrent processes. This report makes extensive use of process algebra. In
Sections 1, 2, and 3, the use is readily understood by the general reader. The
example application of the model requires more specific knowledge of CSP. In
all sections, the results are independent of process algebra per se, and could be
explained with other models of computation.

2 A Survivability-Oriented Model of Faults

We classify fault events in terms of a four tuple: (target, mode, damage, invalida-
tion). The fault mode describes the behavior of a process that has experienced a
fault, in particular the future output events, but also other events that affect the
future behavior of the process. (The Byzantine nature of a fault would be part of
its mode.) The fault target of a fault event describes the set of processes that are
affected by the fault event. Some fault modes are defined in terms of their effect on
the fault target. Fault damage describes the effect of a fault on the representation
of a process, that is, how it must be repaired as part of a restoration of services.
Fault invalidations are the most important part of our fault model. Invalidations
characterize the relationship of a fault event to an application’s survivability.

2.1 Target

Including a target set for a fault event allows us to show how the event impacts the
infrastructure and environment of the process experiencing the fault event. Each
fault is an event experienced by some process P, the faulting process. The fault

A Fault Model for Survivable Applications McDermott

-babb]e I
atomic
exception

Figure 1: Fault Modes

causes P’s behavior to change. The changed behavior may include error events,
that is, incorrect events that may cause a subsequent fault in processes that accept
it. The target of a fault is the set of processes that have communication or memory
shared with the faulting process. Notice that a process @ may be in the target for
a fault in process P, but correctly handle the error events. Finally, we point out
that we need to include all potential communication channels or shared memory
by which processes might become the target of a fault, and not just those that
make our application work properly.

On the other hand, we should not include descriptions of the response of target
components to error events. It is reasonable and even critical to describe this ,
but attaching it to the target draws us into model where each fault contains the
closure of all faults that could depend on it. Again, this closure is useful, but
better left distinct from individual fault descriptions.

2.2 Mode

We describe a fault mode as a parameterized event fault(P). A fault(P) event
takes a process P as a parameter. Parameter process P describes the behavior
of the faulting process after fault(P) happens. We find it helpful to define the
parameter process as a combination of elementary fault modes. The elementary
fault modes are: captured, killed, deceived, babble, stuck, k, div, stop, atomic, and
exception. Figure 1 shows the fault mode ordering.

The first two modes, captured and killed, represent faults that propagate error
(i.e. bad) processes, by replacing good processes with bad processes. The next
three modes, random, stuck, and k, represent faults that cause processes to prop-
agate error events, but not respond to their environment. The next two modes,
div and stop, represent faults that do not propagate error events, but do cause the
faulting process to quit functioning. An atomic fault may cause the omission of an
event or the failure of a process, but the system will be in a consistent state after
the fault. Finally, an exception mode fault is a fault that is detected and handled
without error.

A captured mode fault describes a fault event that results in a process P gaining
control of another process . The process P now decides which events the captured
(i.e. faulting) process @ will participate in. A process experiencing a captured
fault continues to base its future behavior on external events.

A killed mode fault is one where a faulting process P is erroneously forced into

A Fault Model for Survivable Applications McDermott

a different state, e.g reset or reconfigured. There is no controlling process that
decides the future behavior of P but P incorrectly interrupts its processing and
resumes in an error state. (The analogy is to the Unix kill command, i.e. process
P receives “kill -s SIGHUP”.) A process experiencing a killed fault continues to
base its future behavior on external events.

A deceived mode fault describes a fault event (almost always due to an attack)
that is accepted by the faulting process, but not recognized by it as exceptional.
For example, if an attacking process P is communicating error events d; to a
set of replica processes, a deceived mode fault in one of the replica processes Q;
would result when Q; accepted the error events d;, but did not recognize them
as errors. The distinction between deceived mode and captured or killed mode is
that a process experiencing a deceived mode fault is neither controlled in arbitrary
ways nor reconfigured, but only accepts and acts on incorrect events taken from
its own alphabet. A process experiencing a deceived fault continues to base its
future behavior on external events.

A babble fault happens when a faulting process starts generating externally
visible events, randomly, without consideration of events presented to it by its en-
vironment. We model a babble fault as a process Babble(M) that takes a transition
probability matrix M, defined over aBabble. The alphabet aBabble of the babble
fault process includes the incorrect events that define the specific fault behavior.
The alphabet may not include successful termination (represented in CSP by the
event v or tick). We treat the traces of Babble(M) as a Markov chain. A process
experiencing a babble fault no longer bases its future behavior on external events
and does not resume normal operation.

A k fault describes an intermittent fault involving externally visible events. A
k fault process is represented by a process Fault,(P) which takes another process
P as a parameter. The alphabet of process P includes the fault events that de-
fine specific fault behavior. If process @ experiences a Faulty(P) fault then Q’s
behavior is the the sequential composition of k instances of process P followed by
process (. A process experiencing a k-fault no longer bases its future behavior on
external events and does not resume normal operation, during the k repetitions of
parameter process P.

A stuck fault describes a process which is generating externally visible events,
in a periodic fashion. Like k fault, a stuck fault is represented by a parameterized
process, in this case Stuck(P), that takes another process P as a parameter. A
process Stuck(P) repeats the events of process P indefinitely. A process experienc-
ing a stuck fault no longer bases its future behavior on external events and does

not resume normal operation.
A diverge fault causes a process to be replaced by the standard CSP process

div={(uPea— P)\a

The div process carries out an unbounded sequence of (invisible) internal events 7
and thus models a process that is running but not communicating. A practical dis-
tinction between div and Stop is that div continues to consume resources from the
infrastructure while Stop does not. Some network management and IDS sensors
might mistakenly consider a diverge faulting process to be running properly.

A Fault Model for Survivable Applications McDermott

A stop fault causes a process to act like (be replaced by) the standard CSP
process Stop. This represents a process that has crashed (or its supporting infras-
tructure has crashed). A stop fault should always be detectable.

A fault that is less severe that a stop fault is an atomic feult. An atomic fault
has no visible effects outside the faulting process, other than the non-occurrence of
some events that are replaced by the atomic fault event. The process experiencing
the atomic fault event is serializable [2] and at least recoverable. If it faults, it
leaves no effect on the system. The idea here is that something happened that the
process could not prevent, but by design no side effects were left after the fault.

The final and least severe fault behavior is an ezception feult. An exception
fault describes the occurrence of a fault that is recognized and reported by the
process that experiences it. A process must have a behavior defined for each
exception that it can recognize and report. Exception faults are recognized and
handled, even if the handling is only to raise the exception to another process. The
specific behavior of a process experiencing an exception fault is not constrained
beyond the need to recognize the exception and include at least one event that
constitutes reporting or handling of the exception.

None of these elementary fault modes defines a Byzantine fault by itself. An
elementary captured, killed, deceived, or babble fault could also be exhibiting
Byzantine behavior, or we could describe a compound fault that was also Byzan-
tine.

2.3 Damage

We define four damage classes that represent the effect of a wrong input event
on the representation and state data of a process that receives it. Damage clas-
sification is useful for characterizing the kind of repair that would be needed to
restore a damaged process. In order of decreasing severity the damage modes are:
von Neuman damage, Harvard damage, post-condition damage, and pre-condition
damage

Von Neuman damage is damage to the underlying representation of the events
of a process. The damage will persist until either the infrastructure or the envi-
ronment repairs the representation. Furthermore, we do not expect to repair the
damage by sending commands or events to the faulting process. A familiar exam-
ple of von Neuman damage is a buffer overflow attack that damages (manipulates)
executable code. The infrastructure of a process is responsible for preventing von
Neuman damage.

Harvard damage is damage to the underlying representation of the data (local
or shared) of a process. The damage will persist until either the infrastructure or
the environment repairs the representation. Erasing a database file (at an inappro-
priate time) would be a familiar example of Harvard damage. The infrastructure
of a process is responsible for preventing Harvard damage.

Post-condition damage is (self-inflicted) damage to the state data of a process.
The data representation is correct, but due to a fault event the receiving process
sets its state data to an incorrect value. The result is that the process begins
to fault its (sequential) post-condition. An example of post-condition damage

A Fault Model for Survivable Applications McDermott

von Neuman damage

Harvard damage

post—condition damage

pre—condition damage

Figure 2: Damage

would be a process setting a sequence counter to the wrong value and erroneously
aborting a valid run of a protocol. We normally expect some chance of repairing
post-condition damage by corrective inputs to the process. A process is responsible
for protecting itself from post-condition damage.

Pre-condition damage is the damage caused by a wrong event that violates the
(sequential) pre-condition of the process, but does not cause any of the more serious
forms of damage. Pre-condition damage describes transient faults. A process is
responsible for protecting itself from pre-condition damage. A process that suffers
pre-condition damage does not need to be repaired, but the cause of the error
event needs to be dealt with or the damage may occur again.

2.4 Invalidation

The most important concept regarding a fault is the set of assertions that it in-
validates. An application, its infrastructure, and its environment are organized
on the basis of certain assertions. The processes of the application must en-
force (implement) some of these assertions. The infrastructure or environment
of a process must enforce the remaining assertions. If A is an assertion, then
P an enforcing process for A is a process P that must be working properly for A
to hold. The set of all enforcing processes for assertion A is its enforcement set.
So every assertion about a survivable system has a (possibly empty) enforcement
set. Empty enforcement sets are a consequence of flawed design or specification.
There should be no empty enforcement sets in a properly specified and designed
application. On the other hand, most solutions make certain assumptions that

A Fault Model for Survivable Applications McDermott

they do not enforce. For example, agreement protocols assume that the partici-
pating processors do not have common mode faults where a single fault can affect
all processors. In our survivability-oriented fault model, these assumptions be-
come assertions subject to invalidation. These kinds of assertions must either be
enforced by the infrastructure or the environment.

The four classes of damage we described previously constitute four implicit as-
sertions for every process in a survivable system, namely that neither von Neuman,
Harvard, post-condition, nor pre-condition damage can happen to a process. If a
particular process assumes these conditions, then its infrastructure or environment
must enforce the condition as an assertion, i.e., the enforcing process(es) must be
in the environment or infrastructure.

Faults can cause damage that invalidates an assertion. A faulting process can
kill, deceive, or capture some of the enforcing processes. An enforcing process can
fail to enforce an assertion A on a temporary basis, when it experiences k, atomic
or exception faults. Each fault event in our model has an invalidation: the set of
assertions that it invalidates.

We characterize the survivability of an application, system or architecture by
identifying its assertions, their enforcement sets, and the invalidations of the fault
events the system may experience. It is critical for the defenders to identify all of
the assertions that impact the survivability of an application. The defense needs
to be clear about the kinds of fault events that have non-empty invalidations and
the assertions that have empty enforcement sets.

2.5 Identification of Enforcement Sets

The first step in finding the enforcement sets of an application is finding all of
the pertinent assertions. Some of these will not be explicit; in fact, some of the
most critical may not be explicit. For example, there may be an expectation that
a group of components does not experience a common mode fault, that all faults
are independent.

When we know the assertions, we can find the corresponding enforcement sets.
For a given assertion A, we find the enforcement set by removing processes that
do not enforce A. The remaining processes are the enforcement set for A.

2.6 The Null Fault

We can define the null fault as (@, fault(Skip), post-condition, §) which has no
effect on any system component. This is useful in formal approaches that may
require a fault to be present at all times.

3 Modelling the Effect of Faults on Security and
Survivability

This fault model can address the impact of fault events on security. Since the
model looks at invalidations applied to enforcement sets, we do our assessment

A Fault Modecl for Survivable Applications McDermott,

in terms of the enforcement mechanisms. We adapt and extend a framework due
to Landwehr et al. [5] that describes the requirements on logical structures for
security mechanisms. The original framework was intended for host hardware
mechanisms only, but, since it addresses requirements for logical structures, it is
casily generalized. An enforcement mechanism should be able to

e define and separate domains

e establish an initial domain for itself

e link external actors with domains

e control inter-domain communication

e control communication with the environment

o detect and handle faults

3.1 Define and Separate Domains

Computation is manipulation of physical symbols. Domains limit the set of possi-
ble symbols and manipulations. In hardware, domains are made up of instructions
that may be applied to bits in memory cells. Whatever the model of computa-
tion, a security mechanism built on that model must be able to limit the possible
computations as necessary. A model of domain definition and separation must be
concerned with the implementation of a mechanism if we are going to investigate
the effect of exceptions on it. Domains must not be accomplished by specification,
but by describing the actual enforcement mechanism, in order to show how the
mechanism can be impacted by faults. Rushby and Randell [7] have identified
four basic approaches to domain separation: physical, cryptographic, temporal,
and logical. These basic approaches can be combined as in the Multiple Single-
Level (MSL) approach to security, where physical and logical mechanisms are used
to provide mandatory separation of domains.

3.2 Establish Initial Domains

A security enforcement mechanism must either protect itself from tampering or
rely on a trustworthy external mechanism. Security mechanisms rely on an initial
domain for self-protection. Most cryptographic solutions rely on physical and log-
ical mechanisms to establish a separate initial domain; that is, they receive some
master key from outside their own domain and this key 1(and others) are protected
by unspecified means. Network security mechanisms, which may include several
cryptographic components, frequently are designed to initialize themselves in do-
mains enforced on designated trusted host systems. (Here, we would consider a
cryptographic peripheral with its own processor and memory to be a ” designated
trusted host system.) A model of initial domain construction should address how
this initial domain is implemented. This may require modelling of things nor-
mally left out, including the internal representation of processes being initialized.

A Fault Model for Survivable Applications McDermott

A separate model of initialization, for the specific mechanism, may be a better
approach.

3.3 Link External Actors With Domains

Accountability has always been a fundamental part of security. In the case of
information systems, linkage of external actors with domains is also important for
intrusion detection and automated response. Linkage can be established physi-
cally (e.g. biometrics), logically, or cryptographically. (We have been unable to
come up with a plausible temporal authentication mechanism.) Notice that it is
important to preserve the linkage over the life of a domain and perhaps beyond,
if the mechanism is to support intrusion detection.

3.4 Control Inter-Domain Communication

Security mechanisms must also be able to control communication between the
domains they enforce. Controlled inter-domain communication is the reason for
having security mechanisms. If there was to be no inter-domain communication,
then security could be achieved by isolating each process but then no information
would be shared. For most systems, this would be a useless arrangement. Access
control mechanisms exercise control over inter-domain communication via shared
memory. Network security mechanisms exercise control over inter-domain com-
munication via session keys and routing. When we model this aspect of a security
mechanism, we should model both the means of communication and the way that
this communication is controlled.

3.5 Control Communication With the Environment

The environment of a security mechanism is a source of commands and data with
unknown provenance. A security mechanism needs to control those external com-
munications in order to control computation. Values that are communicated to
the environment are no longer under the control of the security mechanism. A
security mechanism has trust relationships with its environment, accepting events
and communicating values on trust. In some designs, a mechanism can use identi-
fication and authentication to screen out untrusted processes in the environment.
Some mechanisms accept all events, but do not respond to events that would
violate their policy. In other cases, the architecture provides the trust, i.e. all
communications over a specific channel are trusted. The distinction between this
requirement to control external communication and the need to link actors to do-
mains corresponds to the distinction between prevention and detection. Control
allows the security mechanism to disregard undesirable events but linkage does
not. In any of these cases, a model for analyzing the effects of fault events on
security must show either that there are enforcing sets that can prevent or enable
communication with the general environment, or that the security mechanism is
connected to its environment in a trustworthy fashion. In the latter situation, we

A Fault Model for Survivable Applications McDermott

can look at the connected part of the environment for the enforcing sets and also
for unintended transitive connections to untrustworthy processes.

3.6 Detect and Handle Faults

Security mechanisms must be able to both detect and handle faults that impact
them. Some mechanisms, like access controllers, may have fault detection ca-
pabilities for almost every kind of fault that can impact them. Other, such as
cryptographic authentication protocols, may appear to have no fault detection or
handling, especially when viewed at the Alice, Bob, and Yves level of abstraction.
However, these mechanisms assume that faults do not allow an intruder to bypass
them or interfere with their functioning. Implementations of these kinds of mech-
anisms should be designed to detect and handle faults reported by the mechanism
infrastructure. Like survivability analysis for domains, initialization, and commu-
nication, fault detection or handling requires us to model its implementation.

3.7 Ten General Assertions

These six requirements also constitute implicit assertions that a security mech-
anism makes about itself. We combine these with the four damage assertions
to get a total of ten mechanism- and policy-independent security-relevant asser-
tions that could potentially be invalidated in any survivability environment. To
asses the survivability of a specific security mechanism we would add policy- and
mechanism-specific assertions to these ten universal assertions. At this point we
could investigate the effect of specific faults, using the four part model.

4 A Process Algebra Example

An example will clarify our model and its application. Consider a simplified finan-
cial payment system, which is supposed to be survivable. Our survivable payment
system has four tolerable forms of service R and survives two kinds of faults from its
environment; it matches the diagram of Figure 3. The services are R; Preferred, R
Major Customers, R3 Financial Markets, and R4 Fail Stop. The services depend
on two databases ¢ and m that support major customers and financial markets
respectively. We propose an FRS-based architecture [3] to satisfy the specifica-
tion. We assume the user workstations have no persistent user-modifiable storage
and assume that suitable threshold schemes are used by the access controller to
provide fragment keys. Each database is split into two fragments, then scattered
and replicated across four servers Deedee, Erica, Fritz, and Greg. In practice, a
relatively large number of fragments is needed, say 16, but this would make our
example cumbersome. Likewise, in practice the scattering and replication is vari-
able, but modelling the pseudo-random inter-server algorithm that decides it is
also too complex for this example. In our simple model, Servers Deedee and Fritz
have fragments ¢; and my, servers Erica and Greg have fragments ¢z and m;. Au-
thorization to access the databases in various modes is given by an authorization

10

A Fault Model for Survivable Applications McDermott
workstations FRS servers
Alice >— _p Deedee
m c
(NS
Bob
access Erica
controller m,c,
=
Carl >
Fritz
™ firewall
——p Greg
m.c
2

Figure 3: FRS Architecture for Financial Transactions

server. (This server is itself protected by FRS, with threshold schemes.) Our FRS
architecture is shown in Figure 3.

4.1 Security Policy

The security policy is that: (1) Alice may access both the ¢ and m databases; (2)
Bob may access just the ¢ database; (3) Carl may only access the m database.
These three conditions constitute the application-specific assertions that we make
about this example system.

4.2 Process Algebra Model

We will model this FRS system using CSP process algebra and specify two faults
using our model. One fault will be a fault an FRS mechanism can survive and the
other will be a fault it cannot survive. The fault model will show us how the FRS
mechanism is affected by the faults.

The local area network is modelled as a collection of sequential communications
interleaved over a compound index of network links Links and messages Msgs. The
set of network links Links is the Cartesian product WorkstaU Serv x WorkstaU
Serv of host names (Worksta for workstation names and Serv for server names)

LAN(s,d,m) = in.s?s.d.m — Skip

LAN:”

s.d€Links LAN(s,d, m)

mEMsgs

11

A Fault Model for Survivable Applications McDermott

Each communication sends a message m from a source address s to a destination
address d. The messages are compound objects, but the LAN does not look inside
them. Message events are mapped to the messages sent by the workstations and
the hosts, so we could have m = write.z.f;.s, if the message is a write request, with
sequence number s, to set fragment f; to z. Notice that process LAN has input
in.s and output channels out.d for every link s.d, so workstation-to-workstation or
server-to-server communication is possible, even though our well-behaved processes
do not engage in such communication.

The LAN does not include the firewall because we will not be examining faults
that involve the firewall. The LAN does not include the authentication server
because we will not be examining faults in communication with the authentication
server. We will model the authentication server’s control of access as a process
TAM which has a local access control matrix A. To simplify the matters, the
matrix is fixed. Each workstation will check with the authentication server be-
fore accessing a database. This models the management of fragment keys in the
implementation. Since fragment keys allow all modes of access, there is only one

security privilege a in the set of access privileges R.

TAM = tamin?w.d € WD —
ifa € [w, d] thentamout!w.d.a else tamout!w.d.§ —

TAM

The workstations are modelled by processes Alice, Bob, and Carl that act as
event generators to drive the model. Each workstation process is a collection of
parameterized sequential read and write transactions, interleaved over a compound
index. The index for the read transactions comprises readable fragments f €
FRS,, and read transaction identifiers s € ReadID. An element of the readable
fragments set FRS, is a quadruple f = h;.fi.h2.f2, where h; denotes a server
and f; denotes a fragment. Set F'RS, only contains useful quadruples; that is,
my.Deedee.my.Greg is in FRS, but m;.Deedee.my . Fritz and m,.Deedee.f, . Fritz
are not. We allow the read transaction to inspect the parts of fragment f. We use
f; to denote either the name (in the outgoing request) or the value (in the return
from the host) of a fragment. A single read transaction for the workstation Alice
is

Readatice(f, 5) =
((outlalice.hy.read.fi.s = in?hy .alice.f.s — Skip)
Il (outlalice.hy.read.fo.s = in?hy.alice.fo.s — Skip))
| (outlalice.hy .read.fi.s — outlalice.hy.read.fo.s — Skip)

(The second parallel process is an auxiliary process used to force the fragment
reads to occur in a specific order.) We precede the basic read process with a

security check

CheckedReadapice(f, s) =
taminlalice.f — tamout?alice.f.p — if p = a then Readaiice(f, 5)

Now we can interleave all of the reads from workstation Alice

12

A Fault Model for Survivable Applications McDermott
Readsatice = ||| jerns, CheckedReadaice(f, s)
s€EReadlD

The index of a single write transaction comprises new fragment values z € Values,
fragment replicas that must be written f € F'RS,,, and write transaction identifiers
s € WriteID. An element f of FRS,, is an octuple

hy.fi.ho.fo.hs.fi -ha.fo (with fragments f; and servers h;) that describes a meaningful
combination of fragment replicas and host servers. We allow the write transaction
to inspect the parts of fragment replica f. We also assume, to simplify, that
the hosts have a way of mapping value z to the fragments they hold. A write
transaction for workstation process Alice is

WTiteAlice(mafy .S) =
((out'alice.hy write.x.fi.s — in?hy .alice.ack.s — Skip) |||
(outalice.hy write.z.fo.s = in?hy.alice.ack.s — Skip) |||
(outlalice.hz.write.x.f.s = in7hz.alice.ack.s — Skip) ||
(outlalice.hy write.x.fo.s = inThy.alice.ack.s — Skip))
[
(outlalice.hy write.z.f.s — outlalice.hy write.z.fo.5 —
outlalice.hs write.z.fi.s — outlalice.hy.write.z.fo.s — Skip)

Like the read transactions, there must be a security check first

CheckedWriteapice(z,f,8) =
taminlalice.f — tamout?p : R — if p = athen Writeajice(z, f, 5)

Now we can interleave all of the writes from workstation process Alice

cevarues CheckedWrite apice(2, f, s)

fEFRSw
IEWritelD

Writesatice = ||

We get the workstation process Alice by interleaving Reads atice and
Writes ajice as

Alice = Reads atice ||| Writes atice

We combine all of the workstation processes by interleaving to get the compound
process

W orkstations = Alice ||| Bob ||| Carl

We model the servers in the same style as the workstations with a server pro-
cess for each server. A Get transaction process services a read request from a
workstation and a Set transaction process services a write request. For simplicity,
we make no attempt to provide serializable histories. Also, as in the original FRS
approach, the servers make no security checks. Any process that has the fragment
key may access a fragment. A Get transaction for sever Deedee looks like

Getpeedee(w, f,) = in?w.deedee.read.f s = out!deedee.w.f.s — Skip

13

A Fault Model for Survivable Applications McDermott

The Get transactions are indexed over the set of workstation names Worksta,
the set of valid data fragments for the host Fjs, and the set of read transaction
identifiers ReadID.

weworksta GetDeedee (W, f s)

f€Fpeedee
s€ReadlD

Getspeedee = |

A Set transaction looks like
Setpecdee(w, f,x,s) = in?w.hwrite.z.f.s = out!w.h.ack.s — Skip

The Set transactions are indexed over the set of workstations w € Worksta,
the set of valid data fragments for host f € Fpost, the set of allowable data values
z € Values, and the set of write transaction identifiers s € WritelD.

Setspeedee = “l wEW orksta Setpeedee(w,f,x,s)
J€Fpcedee

r€values
sEWritel D

The interlcaved Sets and Gets make up the server process, as in

Deedee = Getspeedee ”I Setspeedee

To complete our survivable system, we must connect the workstations and
servers to the LAN. We rename the I/O events in the workstation and server
processes to match their LAN connections using a renaming function. Renaming
function cable is defined as

cable(out!s.d.xz) = in.s?s.d.x fors,d € WorkstaU Serv
cable(out!s.d.x) = in.s?s.dx fors,d € WorstaU Serv
cable(y) =y for all other events

The connection to the LAN process is by interface parallel
FRS = cable(Workstations) || cable(Servers)LAN

Figure 4 shows the process communication of the FRS solution.

We conclude with a brief analysis of this architecture according to our fault
model. The FRS mechanism we have chosen implies the ten general security
mechanism assertions. Qur security policy brings in three more assertions. We
will look at the ten general assertions, but defer identification of enforcement sets
until we look at specific faults.

Define and Separate Domains
There are three kinds of domains in our example: workstation, LAN, and

server. We examine each in turn.

A domain on the workstation is defined and separated by the workstation in-
frastructure and the architectural requirement that all of a workstation’s storage
(persistent and volatile) is erased at the end of each user session. Workstation

14

A Fault Model for Survivable Applications McDermott

in.greg

in.fritz

in.alice
I in.bob in.erica
Alice

in.carl in.deeded

Bob bv v v vy |

Carl LAN Deedee

out.bob

out.carl

out.deedee Fritz

out.alice -
out.erica l__?ﬁeggj

out.fritz

out.greg

Figure 4: Process Algebra Communication Diagram

domains allow unlimited interpretation of instructions and data, on the worksta-
tion. A new domain is defined each time a session starts, by the erasure of a
workstation’s storage.

A domain on the LAN is defined and separated by the fragment key associ-
ated with a set of fragments. Any process possessing the fragment key will be
able to properly concatenate the fragments (e.g. get my; my instead of my; my
) and decrypt them. Processes not holding the proper fragment key have their
computation limited to cryptanalysis of all possible orderings of a complete set of
encrypted fragments. A new domain is created each time a workstation requests
a fragment key from the access controller and uses the key to fragment a copy of
a database.

A domain on the server is defined and separated by both the fragment key and
by scattering. The effect of the latter is that a domain contains only partial sets of
encrypted fragments. New domains are created in a two step process: workstation
fragmentation according to a fragment key and fragment scattering. Scattering is
negotiated between the servers by a pseudo-random algorithm.

Establish Initial Domains

Initial domains are either set up by the infrastructure of a process, e.g. worksta-
tion process Alice, or by the access controller. In our solution, the access controller
is protected by a separate FRS scheme that we will not model.

Link External Actors with Domains

This FRS architecture uses the workstation infrastructure to link external ac-

tors with workstation domains. The access controller is responsible for linking

15

A’Fault Model for Survivable Applications McDermott

external actors with LAN and server domains. In an FRS scheme, workstations
broadcast requests for fragments, in random order. Each server that holds a frag-
ment always sends it to the requesting workstation, so the workstations and LAN
do no linkage.
Control Inter-domain Communication

An FRS mechanism has no control over inter-domain communication, other
than what is supplied by the workstation process infrastructure. That is, we expect
either the infrastructure or the workstations themselves to protect fragment keys
and not to broadcast assembled plaintext databases.
Control Communication With the Environment

Our example architecture shows a firewall that controls communication with
the environment. A pure FRS mechanism does not control communication with
its environment, since it is computationally unfeasible to reassemble and decrypt
a meaningful set of fragments. We should mention that FRS also must trust the
access controller not to give fragment keys to the environment.

Detect and Handle Faults

A common sense interpretation of the FRS mechanism would allow for au-
diting and intrusion detection by the infrastructure. Intrusion detection might
be complicated by the opacity of the database fragments. Reported attempts to
copy or modify fragments could not be linked to the database associated with the
fragment.

4.3 A Survivable Fault

Now we can apply our fault model to see how a fragmentation-redundancy-scattering
architecture survives a fault. We suppose a fault in one of the servers, say Deedee
to be specific. The target set for this fault includes all of the servers, all of the
workstations, and the authentication server. We suppose that the fault is a cap-
tured fault faultp,,q..(P) with parameter process

P = Deedee ||| (| | 'feFD“d” out'bob.deedee.k.f — Skip)
This fault replaces process Deedee with captured process described by the param-
eter of faultp,,gee(P). We do not concern ourselves with which process may have
captured server Deedee.

Notice that weak encryption generally prevents the captured server process P
from inspecting the fragments to see if they are m fragments; that is, we cannot
say iff = my V f = my then out!bob.deedee. f because we cannot identify the
fragments.

As it occurs, the fault has no potential to violate the security policy. However,
if the fault propagates as a second captured mode fault faultg,,(P)) resulting in
the capture of workstation process Bob as parameter process

P = Bob ||| (1 X .in?bob.deedee.k.f : Leakpeedee —* X)

16

A Fault Model for Survivable Applications McDermott

where Leakpeedee is the set {bob.deedec.k.f | f € Fpecdee} of all unauthorized
messages that dump fragments to Bob. (Value k is a nonce used to identify the
messages used to leak the database.)

The damage to both processes is von Neuman damage, since their programs
have been damaged. To remove the fault, the programs will have to be replaced.

At this point it looks like we have the potential to experience a security violation
in this FRS system. That is, it looks like the assertion Bob may only access the ¢
database will now be violated. However, since Bob only gets my fragments from
server Deedee, and these are encrypted, he can’t do much with them. In fact, the
invalidation of this fault is the two self-protection assertions about von Neuman
damage to to the original Bob and Deedee processes, since we have not given the
faultg,,(P) process the ability to search the encrypted fragments and reassemble
them, without the proper fragment key. The enforcement set for this assertion is
{Alice, Carl,TAM} since these three processes are responsible for encrypting the
fragments of m with a key that Bob does not know.

4.4 A Non-Survivable Fault

Our fault model is also useful for investigating faults that are not survivable. The
FRS system we have proposed cannot survive a captured mode fault fault 43;c.(P)
with parameter

P = CheckedRead ajice(f, s); Leak{m)
where Leak(m) is
if i = m, then outlalice.bob.k.fi — outlalice.bob.k.fo — Skip

The target of the fault fault ;.. (P) is all of the workstations, the servers, and
the authentication server. If this fault captures CheckedReadaiic.(f,s) and also
propagates a captured mode fault faultpg,,(P’) to workstation process Bob

P" = Bob ||} (1 X .in?bob.alice.k.f :{mi, mz} — X)

The damage of these faults is also von Neuman, so the affected programs will need
to be replaced with valid versions.

In this fault, the invalidation includes the application-specific assertion, “Bob
may access just the ¢ database” as well as the two von Neuman damage assertions.
Bob does not get full access to the database, but only read access. It is also
possible for workstations in our FRS architecture to leak fragment keys to one
another which would grant full access, but we cannot model this fault with the
simple authentication server process we have used here. We could model fragment
keys, but the model would become too large for this paper.

5 Conclusions

Navy mission-critical systems have significant survivability requirements and un-
avoidable complexity. Systems that process national-security information are likely

17

A Fault Model for Survivable Applications McDermott

to be targets of sophisticated attacks. Unavoidable complexity may lead to unex-
pected accidental faults. A fault model that supports precise analysis of mission
impact, response, and restoration of services is necessary for the design process. A
precise fault model is also necessary for assurance and certification of survivability
in Navy systems.

The four-tuple fault model (target, mode, damage, invalidation) gives us a way
to describe the propagation of faults, the change in behavior, the means of repair,
and the impact on system features. In this paper failure modes are described using
a process algebra. Any well-defined model of computation may be used to describe
failure modes. Examples of such models would be automata, grammars, and Petri
nets.

The four-tuple fault model can be used to define taxonomies. One or more of
the tuple components can be treated as a variable and the other components held

constant. For example, we could suppose a tuple
(X, Y,von Neuman, { “Bob may access just the ¢ database”})

to create a taxonomy of faults that allowed unauthorized access for Bob, in our FRS
architecture. A carefully designed taxonomy could be used to define a flaw space.
This flaw space would be useful in making design choices or trade-off studies. The
precise definition of a flaw space depends on the model of computation used for
the fault mode and the language used to specify the assertions in the invalidations.

Our model shows that survivability and security are related through ten basic
assertions that must hold for any security mechanism. Survivable security mecha-
nisms must withstand or tolerate faults that invalidate any of these assertions, as
well as faults that invalidate application-specific assertions about confidentiality,
integrity, or resource allocation. We can even go so far as to draw a useful distinc-
tion between survivability problems and fault-tolerance problems. Fault-tolerance
solutions generally do not consider attacks that invalidate their assumptions or
assertions. Proposed survivability solutions need to consider both the specified
fault events and those fault events that invalidate their assumptions or assertions.

References

[1] A. Avizenis, J. Laprie, and B. Randell. Fundamental concepts of dependability.
In Third Information Survivability Workshop, Boston, MA, October 2000.

[2) D. Bernstine, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[3] Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion tolerance in distributed
computing systems. In IEEE Symposium on Research in Security and Privacy,
pages 110-121, 1991.

[4] C. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

18

A Fault Model for Survivable Applications McDermott

[5] C. Landwehr, B. Tretick, J. Carroll, and P. Anderson. A framework for eval-
uating computer architectures to support systems with security requirements,
with applications. NRL Report 9088, Naval Research Laboratory, 5 November

1987.

[6] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. JACM, 27(2):228-234, April 1980.

[7] J. Rushby and B. Randell. A distributed secure system. IEEE Computer,
16(7), 1983.

19

